Verruculina enalia
Verruculina enalia (Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol. Res. 94(5): 689 (1990).
≡ Didymosphaeria enalia Kohlm., Ber. dt. bot. Ges. 79: 28 (1966).
Index Fungorum number: IF 128209; Facesoffungi number: FoF 05281, Fig. 1
Description: see Hyde et al. (2013); Jayasiri et al. (2019).
Material considered: see Hyde et al. (2013); Jayasiri et al. (2019).
Fig. 1 Verruculina enalia (MFLU 18-2163). a Specimen. b Appearance of ascomata on host substrate. c Ostiole. d Section of ascoma. e Pseudoparaphyses. f, g Asci. h–k Ascospores. Scale bars: b = 500 μm, c–e, h–k = 10 μm, d = 100 μm, f, g = 30 μm.
Importance and distribution
Industrial relevance and applications
Verruculina is important to the medical industry as it produces Enalin A which has antimicrobial, antifungal, phytotoxic and antidiabetic properties (Thatoi et al. 2013).
Biochemical importance of the genus, chemical diversity or applications
Verruculina enalia produces two metabolites enalin A and B, together with a hydroxymethyl furfural and three cyclodipeptides (Lin et al. 2002). Other chemicals such as cyclic lipodepsipeptide, a spirolactone, and a chromanone have also been isolated from marine fungus Verruculina enalia (Bunyapaiboonsri et al. 2020). Enalin A is a coumaranone possessing antimicrobial, antifungal, phytotoxic (Furumoto et al. 1997) and antidiabetic (Manickam et al.1997) properties.
Verruculina comprises only one species known on Avicennia marina (Acanthaceae) in Asia (India), Pandanus sp. (Pandanaceae) in Asia (Thailand), Phragmites australis (Poaceae) in Asia (Hong Kong) and Rhizophora spp. (Rhizophoraceae) in Africa (Liberia, Seychelles).
References
Bunyapaiboonsri T, Yoiprommarat S, Suntivich R, Preedanon S, Komwijit S, Teerawatananond T, Sakayaroj J. 2020 – A cyclic lipodepsipeptide, a spirolactone, and a chromanone from the marine fungus Verruculina enalia (Kohlm.) Kohlm. & Volkm.-Kohlm. BCC 22226. Tetrahedron 76, 131497.
Furumoto T, Hamasaki T, Nakajima H. 1997 – Vasinfectins A and B: new phytotoxins from Neocosmospora vasinfecta. Tetrahedron Letters 38, 5523.
Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN et al. 2020a – Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11,1553–2107.
Hyde KD, Jones EBG, Liu J-K, Ariyawansa H et al. 2013 – Families of Dothideomycetes. Fungal Diversity 63, 1–313.
Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC et al. 2019 – Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10, 1–186.
Kohlmeyer J, Volkmann-Kohlmeyer B. 1990 – Revision of marine species of Didymosphaeria (Ascomycotina). Mycological Research 94, 685–690.
Lin Y, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LL, Jones EB. 2002 – The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a Salt Lake in the Bahamas. Phytochemistry 59, 469–471.
Manickam M, Ramanathan M, Farboodinay Jahromi MA, Chansouria JPN, Ray AB. 1997 –Antihyperglycemic activity of phenolics from Pterocarpus marsupium. Journal of Natural Products 60, 609–610.
Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J et al. 2009 – Molecular systematics of the marine Dothideomycetes. Studies in Mycology 64, 155–173.
Thatoi H, Behera BC, Mishra RR. 2013 – Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4, 54–71.
Recent News
Recent paper to be publishedRecent Genus
NothocladosporiumPhillipsiella
Curreya
Recent Species
Nothocladosporium syzygiiPhillipsiella atra
Curreya conorum