Preussia funiculata
Preussia funiculata (Preuss) Fuckel, Jb. nassau. Ver. Naturk. 23-24: 91 (1870) [1869-70].
≡ Perisporium funiculatum Preuss, Fung. Hoyersw.: no. 145 (1851).
Index Fungorum number: IF 161294; Facesoffungi number: FoF11724 , Fig. 1
Description: see Arx (1973); Cain (1961); Malloch and Cain (1972).
Material considered: see Arx (1973); Cain (1961); Malloch and Cain (1972).
Fig. 1 Preussia funiculata (TRTC 46985, re-illustrated from Fig. 81 in Zhang et al. 2012). a Appearance of superficial cleistothecoid ascomata on host substrate. b Part of peridium from front view. c Squash mount of asci. d Ascus with ascospores. Scale bars: a = 0.5 mm, b = 20 μm, c, d = 100 μm.
Importance and distribution
Li et al. (2012) reported that the agricultural waste of wheat dried distillers' grains with solubles can be used as culture medium for Preussia aemulans and the fermented wheat can then be used as functional material of feed or food. Preussia is also beneficial for pharmaceutical products for example, the preussomerins are antifungal metabolites reported from the coprophilous fungus Preussia isomera (Weber et al. 1991). Endophytic Preussia sp. isolated from Australian dry rainforests exhibit antimicrobial activity against several microbes such as Bacillus cereus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Serratia marcescens amongst others (Mapperson et al. 2014). Preussia minima can produce Amylase (Zaferanloo et al. 2014). Preussia sp. from Himalayan soil produces benzoic acid derivative, benzyl 2,4- di(benzyloxy) benzoate and other compounds that exhibit anti-inflammatory activity (Youn et al. 2019). Preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum have anti-cryptococcal activity (Perlatti et al. 2021).
Biochemical importance of the genus, chemical diversity or applications
Chen et al. (2009) reported Spirobisnaphthalene analogues from endophytic Preussia sp. Diarylcyclopentendione metabolite was also reported from a P. typharum (Du et al. 2012). Chen et al. (2016) found Spirobisnaphthalene analogues from endophytic Preussia sp. Du et al. (2014) reported cytotoxic dimeric epipolythiodiketopiperazines from P. typharum. Rangel-Grimaldo et al. (2017) reported α-Glucosidase inhibitors from P. minimoides. Paudel et al. (2018) reported antimicrobial and antioxidant activities of two polyketides from lichen-endophytic Preussia sp. Al-Hosni et al. (2018) reported nitric oxide, gibberellins, and indole acetic acid from Preussia sp. BSL-10 that helps to improve rice plant growth.
There are 95 Preussia epithets in Index Fungorum (2022), but several species have been transferred to Cordana, Perisporium, Preussiella, Sporormiella and Westerdykella. Preussia comprises 53 species known on a wide range of plants such as Acer truncatum (Sapindaceae), Amygdalus scoparia (Rosaceae), Citrullus lanatus (Cucurbitaceae), Dryas octopetala (Rosaceae), Lycopersicon sp. (Solanaceae), Pinus halepensis (Pinaceae), Solanum lycopersicum (Solanaceae) and Vitis sp. (Vitaceae). Preussia is distributed in Asia (Canada, China, Iran, Iraq), Europe (Spain) and South America (Brazil).
References
Al-Hosni K, Shahzad R, Latif Khan A, Muhammad Imran Q et al. 2018 – Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions 13, 112–118.
Arx JA. Von & AA HA. Van Der 1987 – Spororminula tenerifae gen. et sp. nov. Transactions of the British Mycological Society 89, 117–120.
Cain RF. 1961 – Studies of coprophilous ascomycetes. VII. Preussia. Canadian Journal of Botany 39, 1633–1666.
Cain RF. 1961– Studies of coprophilous ascomycetes. VII. Preussia. Canadian Journal of Botany 39, 1633–1666.
Chen XM, Qiyuan S, Lin G, Guo S, Yang J. 2009 – Spirobisnaphthalene Analogues from the Endophytic Fungus Preussia sp. Journal of natural products 72, 1712‒1715.
Du L, King JB, Morrow BH, Shen JK, Miller AN, Cichewicz RH. 2012 – Diarylcyclopentendione metabolite obtained from a Preussia typharum isolate procured using an unconventional cultivation approach. Journal of natural products 75(10), 1819–1823. https://doi.org/10.1021/np300473h
Du L, Robles AJ, King JB, Mooberry SL, Cichewicz RH. 2014 – Cytotoxic dimeric epipolythiodiketopiperazines from the ascomycetous fungus Preussia typharum. Journal of natural products 77(6), 1459–1466. https://doi.org/10.1021/np5002253
Guarro J, Abdullah SK, Gene J, AL-Saadoon AH. 1997a– A new species of Preussia from submerged plant debris. Mycological Research 101, 305–308.
Guarro J, AL-Saadoon AH, Abdullah SK. 1997b –Two new coprophilous species of Preussia (Ascomycota) from Iraq. Nova Hedwigia 64, 177–183.
Hyde KD, Jones EBG, Liu JK, Ariyawansa H et al. 2013 – Families of Dothideomycetes. Fungal Diversity 63, 1–313.
Kruys Å, Wedin M. 2009 – Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi-gene phylogenies. System Biodiversity 7, 465–478.
Li Y, Hu H, Zu X, Shi M, Zhang Z, Yang Y. 2012 – Improvement of Physiological Active Substance of Wheat Dried Distillers' Grains with Solubles Fermented by Preussia aemulans under Optimum Fermentation Conditions. International Journal of Biology 4.
Malloch D, Cain RF. 1972 – New species and combinations of cleistothecial ascomycetes. Canadian Journal of Botany 50, 61–72.
Mapperson RR, Kotiw M, Davis RA, Dearnaley JD. 2014 – The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Current microbiology 68 (1), 30–37.
Paudel B, Bhattarai K, Bhattarai HD. 2018 – Antimicrobial and antioxidant activities of two polyketides from lichen-endophytic fungus Preussia sp. Zeitschrift fur Naturforschung C, Journal of biosciences 73 (3-4), 161–163.
Perlatti B, Lan N, Xiang M, Earp C et al. 2021–Anti-cryptococcal activity of preussolides A and B, phosphoethanolamine-substituted 24-membered macrolides, and leptosin C from coprophilous isolates of Preussia typharum. Journal of Industrial Microbiology and Biotechnology 48.
Rangel-Grimaldo M, Rivero-Cruz I, Madariaga-Mazón A, Figueroa M, Mata R. 2017 – α-Glucosidase Inhibitors from Preussia minimoides. Journal of natural products 80 (3), 582–587.
von Arx JA. 1973 – Ostiolate and nonostiolate Pyrenomycetes. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen / C 76, 289–296.
Weber HA, Gloer JB. 1991 – The preussomerins: novel antifungal metabolites from the coprophilous fungus Preussia isomera Cain. The Journal of Organic Chemistry 56, 4355–4360.
Youn UJ, Seo SS, Yim JH, Kim IC, Han SJ. 2018 – Chemical constituents from the culture filtrate of a Himalayan soil fungus, Preussia sp. and their anti-inflammatory activity. Korean Journal of Microbiology 54, 18–23.
Zaferanloo B, Bhattacharjee S, Ghorbani MM, Mahon PJ, Palombo EA. 2014 – Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC microbiology 14, 55.
Zhang Y, Crous PW, Schoch CL, Hyde KD. 2012 – Pleosporales. Fungal Diversity 53, 1–221.
Zhang Y, Fournier J, Crous PW, Pointing SB, Hyde KD. 2009a– Phylogenetic and morphological assessment of two new species of Amniculicola and their allies (Pleosporales). Persoonia 23, 48–54.
Recent News
Recent paper to be publishedRecent Genus
NothocladosporiumPhillipsiella
Ampelomyces
Recent Species
Nothocladosporium syzygiiPhillipsiella atra
Curreya conorum