Microsphaeropsis olivacea
Microsphaeropsis olivacea (Bonord.) Höhn. [as 'olivaceus'], Hedwigia 59(5): 267 (1917).
≡ Coniothyrium olivaceum Bonord., in Fuckel, Jb. nassau. Ver. Naturk. 23-24: 377 (1870) [1869-70].
Index Fungorum number: IF 438686; Facesoffungi number: FoF 00400, Fig. 1
Description: see Chen et al. (2015).
Material considered: see Chen et al. (2015).
Fig. 1 Microsphaeropsis sp. (BPI 797151, re-drawn from Fig. 43 in Chen et al. 2015). a–e Microsphaeropsis ononidicola (MFLU 16–2601, holotype). a Conidiomata. b Section through conidioma. c Conidiomatal wall. d Conidiogenous cells and developing conidia. e Conidia. f–q M. spartii-juncei (MFLU 16-0100, holotype) f Ascomata on host substrate. g Section through ascoma. h Peridium. i Pseudoparaphyses. j, k Asci. l–n Ascospores. o Culture on PDA. p Conidioma on PDA. q Conidia. Scale bars: a, g = 100 μm, b, d, i, l–n = 10 μm, c, h, j, k = 20 μm, e, q = 5 μm, f = 200 μm.
Importance and distribution
There are 51 Microsphaeropsis epithets in Index Fungorum (2022), but several species have been transferred to Coniothyrium, Didymella, Paraconiothyrium and Readeriella. Microsphaeropsis comprises 45 species known on wide range of plants. Microsphaeropsis species cause disease on wide range of plants. For example, M. tanaceti causes tan spot disease of pyrethrum (Pethybridge et al. 2008), M. amaranthi causes disease on Amaranthus spp. (Moran & Showler 2007), M. olivacea causes brown spine rot on Alhagi maurorum in Iran (Razaghi & Zafari 2016). Microsphaeropsis has been reported from Asia (China, Japan, Pakistan, Philippines), Europe (Ukraine), North America (Canada, Mexico, West Indies), South America (Ecuador, Hawaii, Illinois, Uruguay, Venezuela) and The United States (California).
Industrial relevance and applications
Microsphaeropsis amaranthi is virulent against several weeds in the Amaranthaceae, including common waterhemp, and hence is an effective bioherbicide, useful for agricultural industry (Smith et al. 2006). Takamatsu et al. (1996) reported (+)-macrosphelide, a fungal metabolite formerly isolated from Microsphaeropsis. The latter inhibits adhesion of hl-60 human leukemia cells to human umbilical vein endothelial cells as well as ovarian cancer cells hence useful in medical and pharmaceutical industry.
Biochemical importance of the genus, chemical diversity or applications
Microsphaeropsis produces wide range of chemicals such as aromatic polyketides and macrolides (Botero et al. 2020), microketides A and B, polyketides (Liu et al. 2020), microsphaerol (Hussain et al. 2015), acetates of botrallin, butyrolactone, enalin derivative 7-hydroxy-2,4-dimethyl-3(2h)-benzofuranone, graphislactone A, ulocladol (Hormazabal et al. 2005). Brauers (2000) reported anthraquinones and betaenone derivatives from the sponge-associated fungus Microsphaeropsis species. Liu et al. (2018) reported alkaloids and butyrolactones from a marine-derived Microsphaeropsis species. Sommart et al. (2012) reported modiolin and phthalide derivatives from M. arundinis. Luo et al. (2013) reported arundinols a–c and arundinones A and B from plant endophytic M. arundinis.
References
Barr ME. 1987 – Prodromus to class Loculoascomycetes. Amherst, Massachusetts, University of Massachusetts, USA
Botero W, Amorim MR, Carlos IZ, Polesi MC, dos Santos, LC. 2020 – Aromatic Polyketides and Macrolides from Microsphaeropsis arundinis. Journal of the Brazilian Chemical Society 31, 2, 364–369.
Brauers G, Edrada RA, Ebel R, Proksch P et al. 2000 – Anthraquinones and betaenone derivatives from the sponge-associated fungus Microsphaeropsis species: novel inhibitors of protein kinases. Journal of natural products 63, 739–745.
Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. 2015 – Resolving the Phoma enigma. Studies in Mycology 82, 137–217.
De Gruyter J, Woudenberg JHC, Aveskamp AA, Verkley GJM et al. 2013 – Redisposition of phoma-like anamorphs in Pleosporales. Studies in Mycology 75, 1–36.
Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, Cai L. 2020 − The phoma-like dilemma. Studies in Mycology 96, 309–396.
Hussain H, Root N, Jabeen F, Al-Harrasi A et al. 2015 − Microsphaerol and seimatorone: two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp. Chemistry & Biodiversity 12, 289−94.
Hyde KD, Jones EBG, Liu JK, Ariyawansa H et al. 2013 – Families of Dothideomycetes. Fungal Diversity 63, 1–313.
Liu Y, Cai S, Hao X, Cao F, Zhu H. 2018 – Alkaloids and Butyrolactones from a Marine-Derived Microsphaeropsis sp. Fungus. Chemistry of Natural Compounds 54, 402–404.
Liu YF, Zhang YH, Shao CL, Cao F, Wang CY. 2020 – Microketides A and B, Polyketides from a Gorgonian-Derived Microsphaeropsis sp. Fungus. Journal of Natural Products 83, 1300–1304.
Luo J, Liu X, Li E, Guo L, Che Y. 2013 – Arundinols A-C and arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. Journal of Natural Products 76, 107–12.
Moran PJ, Showler AT. 2007 – Phomopsis amaranthicola and Microsphaeropsis amaranthi Symptoms on Amaranthus spp. Under South Texas Conditions. Plant Disease 91, 1638–1646.
Pethybridge SJ, Jones SJ, Shivas RG, Hay FS, Wilson CR, Groom T. 2008 – Tan spot: a new disease of pyrethrum caused by Microsphaeropsis tanaceti sp. nov. Plant Pathology 57, 1058–1065.
Razaghi P, Zafari D. 2017 – Phoma crystallifera with Phytotoxic Effects and Pathogenic Potential against Field Bindweed (Convolvulus arvensis L.) in Iran. Journal of Applied Microbiology 122, 1275–1285.
Smith DA, Doll DA, Singh D, Hallett SG. 2006 – Climatic Constraints to the Potential of Microsphaeropsis amaranthi as a Bioherbicide for Common Waterhemp. Phytopathology 96, 308–12.
Sommart U, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Sakayaroj J. 2012 – Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68, 10005–10010.
Takamatsu S, Kim YP, Hayashi M, Hiraoka H, Natori M, Komiyama K, Omura S. 1996 – Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. II. Physiochemical properties and structural elucidation. The Journal of antibiotics 49, 95–98.
Wanasinghe DN, Jeewon R, Peršoh D, Jones EBG et al. 2018 – Taxonomic circumscription and phylogenetics of novel didymellaceous taxa with brown muriform spores. Studies in Fungi 3, 152–175.
Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL et al. 2014 – Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69, 1–55.
Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK et al. 2018 – Outline of Ascomycota: 2017. Fungal Diversity 88, 167–263.
Recent News
Recent paper to be publishedRecent Genus
NothocladosporiumPhillipsiella
Curreya
Recent Species
Nothocladosporium syzygiiPhillipsiella atra
Curreya conorum